
1/28

CSE 321 Software Performance Engineering
Project Report: Modeling a Java Application

Yi Zhang & Haibei Zhang

1. INTRODUCTION

In this project, we are aimed at evaluating the performance of a reasonably complex
Object-Oriented (OO) application written in Java. We follow the three-level hierarchical
performance modeling addressed by Abdel-raouf, Ammar and Sholl [1] to generate
agglomerative models and obtain the overall performance function.

2. MAJOR COMPONENTS

The major effort in this practical project is invested in two phases.

First, we build performance models (i.e. Performance Image or PI) for each class and
object in the system. At the bottom of this hierarchy, we use Computation Structure
Model [2] method to generate the elementary performance functions for each class and
object at the Object-creation Performance Layer (OPL) and Service Performance Layer
(SPL).

Since UML/Class Diagram is a standard way of describing the class’s properties, methods
and relationships with other types, we decide to make extensive use of UML diagrams
when generating Related Classes/Objects Performance Layer (RPL)

Second, we evaluate the performance of each component at the master level by
aggregating the PI at object level. We add up the cost of all components to estimate the
overall cost of the application.

3. PROGRAM ARCHITECTURE

The application we picked is a Text Search/Mining Engine implemented as standalone
J2SE application with graphic user interface (GUI). The application was developed by
Haibei Zhang as a term project for CSE 352: Data Mining. The application implements a
document similarity measurement algorithm based on angle between weighted feature
vectors. Data mining algorithm is integrated to expand the query and retrieve
semantically related but not exact-matching documents.

The application consists of five packages and a total of 22 classes. Classes are roughly
packaged based on their standing in the class coupling or composition relationships. For

2/28

instance, classes in the datastructure package are elementary data structure classes that
are referenced by other classes as components. The manager.ProjectManager is the main
class that organizes all components and interacts with GUI. Below are a screenshot and
the package/class structure of this program:

Figure bellow shows a rough architecture of this application:

GUI Objects

process query and

retrieve result FileImporter ProjectManager
raw docs

request

FrequencyMatrixBuilder

raw docs
words

docs

indices

frequency matrix

build mutual

information matrix

RuleGenerator

mutual

information

matrix

rules

Stemmer StopWord
Filter

OS

User

Frequent Item Set
Miner (Apriori)

3/28

Due to complexity of code and limit on time, we do not model the performance of any
class in the gui package. These classes consist of large number of graphic components
from java.awt.* and javax.swing.* packages. These classes are provided by Sun. These
robust yet complex codes pose great difficulty in performance modeling. Since GUI
objects are created exactly once without any branch or loop structure, we assume they
always execute in constant time and have little effect on overall performance.

We don’t model the advanced part of this application, i.e. the semantic mining and query
expansion functionality. These codes are very dynamic and complex. While we can
assume number of words or documents, we can hardly assume the number of word
associations. The number could vary from hundreds to millions.

That being assumed, we now have manager.ProjectManager as the main class residing on
bottom of the modeling hierarchy, i.e. the master level (the actual main class is
gui.DMProject). Methods in this class are executed in sequential order. Each method does
a specific task, hence is considered a component. Once the modeling of all classes and
objects are done, we may calculate the overall cost from the Computation Structure
Model (CSM) [2] of manager.ProgramManager.

The manager.ProjectManager class organizes all components in a pipeline fashion such
that each component uses the previous component’s output as its input. The figure below
shows a rough control flow graph. This graph is also known as the “driver” of the master
lever, which we will discuss in section 5.5 (note that components in dark color are not
modeled in this report):

4/28

4. APPROACH

The above section shows a big picture of higher-level modeling architecture. We now
discuss the approach we adopt to model each class and object.

Since the input size of this application is described by the number of documents and the
number of total distinct words (which mainly depends on the length of each document),

our goal is to develop a performance function TDWf a×: . We start from modeling the

elementary classes in datastructure package, with an input size of d documents and w
total distinct words.

Figure below shows the UML diagram of datastructure.Word :

start

Import data
(Click “import data” button)

Organize words
Organize documents
Build frequency matrix
(Click “build fm” button)

Build mutual information
matrix
(Click “build mim” button)

Mine association rules
(Click “mine rules” button)

Search engine ready

Retrieve result

end

Perform a search

(Click “search”button)

Quit Program
(Click “exit” button)

5/28

In the diagram, arrows on the left and right side with solid line denote composition
relationships. Outgoing arrows denote “has” relationship meaning this class will
physically create an object of the targeted class as its property; incoming arrows denote
“supplies” relationship. Arrows with dotted line (weak relationship) may sometimes be
ignored if one class just takes over the memory handle of another class in its method or
return value instead of creating and using an object as its property. However if the class
indirectly creates objects of other classes, e.g. creating objects as elements in a Vector or
TreeSet, then the cost should be counted. Arrows on the top denote implement or inherit
relationships. Since all Java objects implicitly inherit java.lang.Object, we ignore this
relationship. Implementing any interface is also ignored because no parental constructor
or method is implicitly invoked. We also treat some standard Java classes as primitive
data types and assume a constant execution time, such as String and Integer. However,
there are Java classes that cannot be regarded primitive, such as Vector, HashMap,
TreeSet classes from java.util.* library.

The UML diagram of datastructure.AllWords reveals the composition relationship
between Word and AllWords. In the application, AllWords class stores all distinct words
(Word objects) in an array (Vector), and provides indexing service from the string content
to the word’s unique ID (the position in the array).

6/28

From the UML diagram we can easily develop a 3-layer PI for Word and AllWords by
converting outgoing arrows into RPL classes. At the object level, since there are w
numbers of distinct words, the AllWords object will create a property of type Vector with
w elements of type Word. The partial modeling diagram concerning Word and AllWords
is shown on the next page.

By illustrating the modeling of Word and AllWords classes and objects as an example, we
show the agglomerative approach of modeling the whole architecture. We will replicate
this process on other classes and objects and finally perform a CSM method on the main
program, the ProgramManager.

7/28

OPL
Cc1(Word)
Cc2(Word)

RPL
None

SPL
C(incrementFrequency)
C(getFrequency)
C(getImage)
C(setID)
C(getID)
……

Word class

OPL
Cc(AllWords)

RPL
HashMap is supplier
Vector is supplier
Word is supplier

SPL
C(addWord)
C(contains)
C(findWord)
C(size)
C(wordAt)

AllWords class

……

Class Level

OPL

Cc2(Word)

RPL

None

SPL

……

Word w0

OPL
Cc(AllWords)

RPL
index is a supplier
mainTable is a supplier
w0 is a supplier
w1 is a supplier
……
ww is a supplier

SPL
……

AllWords allWords

……

Object Level

OPL

Cc2(Word)

RPL

None

SPL

……

Word w1

OPL

Cc2(Word)

RPL

None

SPL

……

Word ww

Import data

start

Build F. Matrix

Master Level

end

Build M.I. Matrix

w Word objects

8/28

5 MODELING

5.1 Assumptions and Exemptions
We assume following features of the input data:

 The input data set contains 1000 documents.
 The input data set contains 2000 distinct words.
 The input data set contains 1000 stop words which should be removed.
 316 stop words have been defined (a, an, the, of, …… etc)
 Each word appears 5 times on average. Hence each document contains 10 words.
 The average length of each word is 5 characters.
 There is 0.3 probability that a user’s search keyword does not exist in the system.

Since any class inherits java.lang.Object. The creation of any object implicitly creates the
Object object. We estimate a 20ns overhead of creating any object.

We exclude following components from our modeling:

 Any class in the gui package. These classes use extensive java graphic interface
classes and are hence complicated. These codes are executed only once during
application execution. Any methods in other classes that are only called by gui
classes are also exempted.

 The preprocessor.Stemmer class. This component was developed by Martin Porter [3].
It is created only once as a static object. Every incoming word is stemmed before
further processing. We assume a constant 20000ns every time
Stemmer.getStemmedWord() is called.

5.2 Estimation of Primitive Operations
Performance of primitive operations, methods of Java standard library objects are
estimated using the following code:

 long start=System.currentTimeMillis();
 for(int i=0;i<1000000;i++)
 {
 The statement to estimate;
 }
 long end=System.currentTimeMillis();
 System.out.println(end-start);

The number printed on standard output is the execution time of 106 loops in millisecond,
which equals the execution time of 1 loop in nanosecond. It consists of the execution time
of the tested statement and the loop overhead. By executing an empty loop, we estimate
that the loop overhead is 4ns.

9/28

Execution time of some primitive operations and Java library object methods is show in
the following table:

Primitive data type operations:
Evaluation 1ns
Primitive operations and initiation of
char, integer, long types

2ns

Primitive operations and initiation of
float, double types

1ns

Trials (==, !=, <, >, <=, >=) 1ns
java.lang.Math
Math.log(double n) 435ns
java.lang.String
String concatenation 20ns
new String(String s) 58ns
string.compareTo(Object o) 30ns
string.equals(Object o) 30ns
string.toLowerCase() 142ns (on a 5-character-long string)
java.lang.Integer (int in object form)
new Integer(int i) 27ns
integer.intValue() 12ns
java.util.StringTokenizer
new StringTokenizer(String s) 312ns
stringTokenizer.hasMoreTokens() 57ns
stringTokenizer.nextToken() 75ns
java.util.Vector
new Vector() 180ns
vector.add(Object o) 1000ns
vector.elementAt(int i) 60ns
vector.size() 27ns
java.util.TreeSet
new TreeSet() 200ns

treeset.add(Object o) 3060ns
java.util.TreeMap
new TreeMap() 74ns
treemap.containsKey(Object key) 300ns (estimated average on size 1-1000)
treemap.get(Object key) 340ns (estimated average on size 1-1000)
treemap.put(Object key, Object o) 420ns (estimated average on size 1-1000)
treemap.keySet() 11ns

10/28

java.util.HashSet
new HashSet() 371ns
hashset.contains(Object o) 66ns
java.util.HashMap
new HashMap() 276ns
hashMap.containskey(Object key) 90ns
hashMap.get(Object key) 110ns
hashMap.put(Object key, Object o) 126ns
java.io.FileReader
new FileReader(String filename) 8000000ns (observed on a 100k file)
java.io.BufferedReader
new BufferedReader(FileReader fr) 60000000ns (observed on a 100k file)
bufferedreader.readLine() 1377ns
bufferedreader.ready() 89ns

Dynamic binding overhead is estimated by calling an empty method associated to an
object. The estimated value is 1ns.

5.3 Performance Image (PI) at Class Level

5.3.1 Class datastructure.Word

Cost of constructor: public Word(String image)

58+1+1+1+20=81ns

11/28

Cost of constructor: public Word(String image, int frequency)
 58+1+1=60ns

A summary of above analysis, and cost of other simple methods is shown below:
Object-Creation Performance Layer (OPL)
Cc1(Word)=81ns
Cc2(Word)=80ns
Related-Objects Performance Layer (RPL)
Supplies AllWords and ProjectManager
Service Performance Layer (SPL)
C(getImage)=1ns
C(incrementFrequency)=1ns
C(getFrequency)=1ns
C(setID)=1ns
C(getID)=1ns
C(compareTo)=43ns
C(equals)=43ns

5.3.2. Class datastructure.RawDocument

 Cost of constructor: public RawDocument(String image)

1+1+1+20=23ns

12/28

A summary of above analysis, and cost of other simple methods is shown below:
Object-Creation Performance Layer (OPL)
Cc1(RawDocument)=23ns
Related-Objects Performance Layer (RPL)
Supplies FileImporter and ProjectManager
Service Performance Layer (SPL)
C(getImage)=1ns

5.3.3. Class datastructure.Result

 Cost of constructor: public Result(int docid, double distance)
 1+1+1+1+1+1+20=26ns

A summary of above analysis and cost of other simple methods is shown below:
Object-Creation Performance Layer (OPL)
Cc1(Result)=23ns
Related-Objects Performance Layer (RPL)
Supplies ResultSummary and ProjectManager
Service Performance Layer (SPL)
C(getDistance)=1ns
C(getDocumentID)=1ns
C(getDocumentImage)=1ns
C(setDocumentImage)=1ns

13/28

5.3.4. Class datastructure.AllWords

Cost of constructor: public AllWords()
 180+276+20(object creation overhead)=476ns

Cost of method: public int addWord(String newword)
Control Flow Graph:

C(addWord)=91+0.8(125+62)+0.2(29+155+1083)=494ns

start

1

2

3

4

end

T F

Cost of each statement:
1: 90+1(dynamic binding)=91ns
2: 110+1(dynamic binding)+12+1(dynamic binding)+1=125ns
3: 60+1+C(Word.incrementFrequency)=62ns
4: 27+1(dynamic binding)+1=29ns
5: 126+1(dynamic binding)+27+1=155ns
6: 1000+1(dynamic binding)+Cc2(Word)=1083ns

Probability of test 1 result:
True: 0.8
False: 0.2

5

6

14/28

Cost of method: public int findWordID(String word)
Control Flow Graph:

C(findWordID)=111+0.7(124)=198ns

A summary of above analysis, and cost of other simple methods is shown below:
Object-Creation Performance Layer (OPL)
Cc(AllWords)=476ns
Related-Objects Performance Layer (RPL)
Supplies ProjectManager and FrequencyMatrixBuilder
Service Performance Layer (SPL)
C(addWord)=494ns
C(wordAt)=61ns
C(contains)=91ns
C(size)=28ns
C(findWordID)=198ns

start

1

2

end

F T

Cost of each statement:
1: 110+1(dynamic binding)+1=111ns
2: 110+1(dynamic binding)+12+1(dynamic binding)=124ns

Probability of test 1 result:
True: 0.3
False: 0.7

15/28

5.3.5. Class datastructure.Document

Cost of constructor: public Document(String newimage)
 1+1+74+20(object creation overhead)=96ns

Cost of method: public void updateFrequency(int wid)
Control Flow Graph:

C(updateFrequency)=28+301+0.8(355+444)+0.2(443)=1057ns

start

1

2

3

4

5

end

T F

Cost of each statement:
1: 27+1=28ns
2: 300+1(dynamic binding)=301
3: 340+1(dynamic binding)+12+1(dynamic binding)+1=355ns
4: 1+27+420+1(dynamic binding)=444ns
5: 27+420+1(dynamic binding)=443ns

Probability of test 2 result:
True: 0.8
False: 0.2

16/28

Cost of method: public int getFrequency(int wid)
Control Flow Graph:

C(getFrequency)=28+301+0.005(355)=331ns

A summary of above analysis, and cost of other simple methods is shown below:
Object-Creation Performance Layer (OPL)
Cc(Document)=96ns
Related-Objects Performance Layer (RPL)
Supplies FrequencyMatrixBuilder
Service Performance Layer (SPL)
C(updateFrequency)=1057ns
C(getFrequency)=331ns
C(getWordSet)=12ns
C(setID)=1ns
C(getID)=1ns

start

1

2

3

end

T F

Cost of each statement:
1: 27+1=28ns
2: 300+1(dynamic binding)=301
3: 340+1(dynamic binding)+12+1(dynamic binding)+1=355ns

Probability of test 2 result:
True: 0.005
False: 0.995

17/28

5.3.6. Class datastructure.FrequencyMatrix

Cost of constructor public FrequencyMatrix(int rows, int cols)
Control Flow Graph:

Cost of each statement:
1: 2000*1000+1=2000001ns
2: 1000+1=1001ns
3: 2000+1=2001ns
4: 4ns (loop overhead)*1000=4000ns
5: Constant distribution: 1000ns
6: 4ns (loop overhead)*2000=8000ns
7: Constant distribution: 2000ns

start 1 2 3

8 9 end

4

5

6

7

T T

F
F

10

18/28

8: 1ns
9: 1ns
10: 1ns
Cc(FrequencyMatrix)=2000001+1001+2001+4000+1000+8000+2000+1+1+1+20(object
creation overhead)=2018026ns

A summary of above analysis, and cost of other simple methods is shown below:
Object-Creation Performance Layer (OPL)
Cc(FrequencyMatrix)=2018026ns
Related-Objects Performance Layer (RPL)
Supplies ProjectManager, FrequencyMatrixBuilder and MutualInformationMatrix
Service Performance Layer (SPL)
C(setElementAt)=2ns
C(incrementRowSumAt)=2ns
C(incrementColSumAt)=2ns
C(incrementTotalFrequency)=2ns
C(getElementAt)=1ns
C(getRowSumAt)=1ns
C(getColSumAt)=1ns
C(getRows)=1ns
C(getCols)=1ns
C(getTotalFrequency)=1ns

5.3.7. Class datastructure.MutualInformationMatrix

19/28

Cost of constructor: public MutualInformationMatrix(FrequencyMatrix fm)
Control Flow Diagram:

Cost of each statement:
1: 1+1(dynamic binding)+1=3ns
2: 1+1(dynamic binding)+1=3ns
3: 2000*1000+1=2000001ns
4: Constant distribution: 4*1000=4000ns
5: Constant distribution: 4*1000*2000=8000000ns
6: Constant distribution: (435+(2+2+1)+1+(2+2+1)+1+(2+2+1))*1000*2000
=904000000ns
7: Constant distribution: 3*2000*1000=6000000ns
Cc(MutualInformationMatrix)=920004007ns

A summary of above analysis, and cost of other simple methods is shown below:
Object-Creation Performance Layer (OPL)
Cc(MutualInformationMatrix)=920004007ns
Related-Objects Performance Layer (RPL)
Has FrequentMatrix
Supplies ProjectManager
Service Performance Layer (SPL)
C(getElementAt)=1ns
C(getRows)=1ns
C(getCols)=1ns

start 1 2 3

end

4

5

6 7

T

T

F

F

20/28

5.3.8. Class preprocessor.StopWordFilter

There is only one instance of this class created in the whole system. The instance is
created together with GUI objects at the launching phase. Therefore we don’t model the
constructor of this class. The only method we need to model is a static method that
checks if a word is a stop word.

Cost of method public static boolean isNotStopWord(String word)
The cost is estimated by observing the hashset.contains(String s) method with a vector
size of 316 (we have 316 stop words) plus some dynamic binding overhead.

A summary of above analysis, and cost of other simple methods is shown below:
Object-Creation Performance Layer (OPL)
Not required
Related-Objects Performance Layer (RPL)
Supplies ProjectManager and FrequentMatrixBuilder
Service Performance Layer (SPL)
C(isNotStopWord)=67ns

21/28

5.3.9. Class preprocessor.FrequencyMatrixBuilder

Cost of constructor: public FrequencyMatrixBuilder()
Cc(FrequencyMatrixBuilder)=Cc(AllWords)+1+180+1+20(object creation overhead)
=476+1+180+1+20=678ns

Cost of method: public void addDocument(String text)
Control Flow Graph:

start 1 2

end

3

4

7 6

T

T
F

F

8

5

9

22/28

Cost of each statement:
1: Cc(Document)+1=97ns
2: Cc(StringTokenizer)+1=313ns
3: Modified geometric distribution (treated as constant distribution since average
document length is 11): 12*(57+1(dynamic binding))=696ns
4: 11*(75+1(dynamic binding)+142+1(dynamic binding)+1)=2409ns
5: 11*(67+1(dynamic binding))=748ns
The inner “if” trial has a probability of 10/11 being true
6,7,8: Binomial distribution: 10/11(20002+496+1058)=19596ns
9: 1000+1(dynamic binding)=1001ns
C(addDocument)=97+313+696+2409+748+19596+1001=24860ns

Cost of method: public FrequencyMatrix buildFrequencyMatrix()
Control Flow Graph:

Cost of each statement:
1: 27+1(dynamic binding)+1=29ns
2: 27+1(dynamic binding)+1=29ns
3: Cc(FrequencyMatrix)+1=2018027ns
4: 4(loop overhead)*1000=4000ns
5: Constant distribution: 1000(60+1(dynamic binding)+1)=62000ns

start 1 2 3

end

4

6

7-10

T

T

F

F

5 11

12

23/28

6: 1000(4(loop overhead)*2000)=8000000ns
7-10: Constant distribution: 2000000(2+3+3+3)=22000000ns
11: Constant distribution: 1000(2+1(dynamic binding)+1+1(dynamic binding))=5000ns
12: 1ns
C(buildFrequencyMatrix)=29+29+2018027+4000+62000+8000000+22000000+5000+1
=32089086ns

A summary of above analysis, and cost of other simple methods is shown below:
Object-Creation Performance Layer (OPL)
Cc(FrequencyMatrixBuilder)=678ns
Related-Objects Performance Layer (RPL)
Has Stemmer, StopWordFilter, Document, FrequencyMatrix, AllWords
Supplies ProjectManager
Service Performance Layer (SPL)
C(addDocument)=24860ns
C(buildFrequencyMatrix)=32089086ns
C(getAllDocuments)=1ns
C(getAllWords)=1ns

24/28

5.3.10. Class manager.FileImporter

Cost of constructor: public FileImporter(int mode, String filename)
Note that mode is always 0 in this version of the application, meaning the FileImporter
reads in every line of a file as a RawDocument. (mode=1 will treat every file as a
document ---not implemented.) Therefore the branching never takes effect. The code in
the constructor is executed in sequential order. The while(in.ready()) forms a constant
distribution of 1000 iterations since there are 1000 lines or documents.
Cc(FileImporter)=180+1+800000+6000000+1
+1001(89+1)+1000(1377+1+Cc(RawDocument)+1000+1)+20(object creation overhead)
=9292291ns

A summary of above analysis, and cost of other simple methods is shown below:
Object-Creation Performance Layer (OPL)
Cc(FileImporter)=9292291ns
Related-Objects Performance Layer (RPL)
Has RawDocument
Supplies ProjectManager
Service Performance Layer (SPL)
C(getRawDocuments)=1

25/28

5.4 Performance Image (PI) at Object Level and Master Level

The central class of this application is manager.ProjectManager. This class is
manipulated by a bunch of graphic interface classes. The main program, gui.DMProject,
launches the root of the graphic interface class, gui.DMProjectFrame.

However, in this analysis, we consider part of the manager.ProjectManager class as our
“main program”. The modeled classes, as shown in section 5.3, form components in this
main program. These components form the master level in our modeling. They are
executed in sequential order without any branching or looping.

5.4.1 Import File Component
(i.e. method public void importFromFile(int mode, String filename))

Cc Co Clocal
Cc(FileImporter)=9292291ns C(getRawDocuments)=1ns C(assign_stage)=1ns
 C(assign_allDocumentsRaw)

=1ns
The cost of this component is 9292294ns

Object Model

Master Level

OPL

RPL

SPL

FileImporter 1000 instances of RawDocument

OPL

RPL

SPL

Import
Files

26/28

5.4.2. Build Frequency Matrix Component
(i.e. method public void buildFrequencyMatrix())

Control Flow Graph of this component:

Cc Co Clocal
Cc(FrequencyMatrixBuilder)=678ns 1000C(addDocument)=24860000ns 1000C(vector.elementAt)=60000

 1000C(getImage)=1000ns 1000C(loop
overhead)=4000ns

 C(buildFrequencyMatrix)=32089086ns C(assign_fm)=1ns
 C(getAllDocuments)=1ns C(assign_allDocuments)=1ns

 C(getAllWords)=1ns C(assign_allWords)=1ns
 C(assign_stage)=1ns
The cost of this component is 57014770ns

start 1

45end

2

3

T

F

6 7

Object Model

Master Level

OPL

RPL

SPL

FrequencyMatrixBuilder

OPL

RPL

SPL

1000 instances of
RawDocument

OPL

RPL

SPL

Build
Frequent
Matrix

1000 instances
of Document

OPL

RPL

SPL

AllWords

OPL

RPL

SPL

FrequencyMatrix

27/28

5.4.3. Build Mutual Information Matrix Component
(i.e. method public void buildMutualInformationMatrix())

Cc Co Clocal
Cc(MutualInformationMatrix)
=90004007ns

 C(assign_stage)=1ns

 C(assign_mim)=1ns
The cost of this component is 920004009ns

5.5 Overall Performance

As shown in section 3, the driver (the main program) executes the import data component,
the build frequency matrix component, and the build mutual information matrix
component in a pipeline fashion. Each component is executed after the previous one. The
total cost is the sum of the cost of the three components:
 9292294+57014770+920004009=986311073ns

Object Model

Master Level

OPL

RPL

SPL

MutualInformationMatrix

Mutual
Info.

Matrix

OPL

RPL

SPL

FrequencyMatrix

28/28

6. CONCLUSION AND DISCUSSIONS

In this report, we model and analyze the performance of the 3 major components of the
application using the hierarchical performance image (PI) approach. UML diagrams are
found helpful in identifying class composition relations and building hierarchical
performance images. The total cost we estimate is 986311073ns. The application is
supposed to take this long time to import data file, build frequency matrix (together with
a number of word/document lists and indices) and build mutual information matrix. This
is the time the application needs to make the basic exact-match searching function ready.
The advanced functionality, e.g. preparation for semantic mining and query expansion,
are not analyzed in this report.

We also notice following limitations of our modeling process:

 We estimate primitive operations by putting it in a loop and observe the cost of the
loop. This could not be accurate since Java compiler may optimize the loop, resulting
in that the statement in the loop is not executed as many times as we specified. This
is the only way we know to estimate cost of primitive operations since the
monitoring methods provided by Java are not fine-grained at nanosecond level.

 We make extensive estimations on Java standard library classes. These classes could
be precisely modeled by the hierarchical PI approach, too.

 Methods of some Java standard classes, usually collection classes in java.util
package, are highly dependent on data size and structure. In our report, we simply
estimate the average cost of these methods using the assumed data size. However,
performance functions could be derived by modeling and analyzing these methods.

7. REFERENCES

[1] A. Abdel-Raouf, R. Ammar and T. Fergany, “Performance-Based Modeling for
Object-Oriented Software”, submitted to the 16 th International conference on Computer
Applications in Industry and Engineering, Las Vegas, Nevada , Nov. 2003.
[2] T. Booth, “Use of Computation Structure Models to Measure Computation
Performance”, Proc. of Conference on simulation, Measurement, and Modeling
of Computer Systems, Boulder, CO, August 1979.
[3] M. Porter, An algorithm for suffix stripping, Program, Vol. 14, no. 3, pp 130-137, 1980.

