CSE 258 Project 2: Storage Management Strategies
With Java Swing

[image: image1.png]
Haibei Zhang

Feb 20, 2003
1. How To Use:
Launch:

There are two ways to launch this program:

a. Compile and build the program source code in “source” folder:


javac mainClass.java
(You will need JDK 1.4.0 to compile)

java mainClass
b. Run the Windows-native executable (if you are using a Windows machine):


A:\>haibei_proj2.exe
Import and export files (.txt files) should be in the same folder as the program.

Run main program (memory management simulator):

Choose “main program” label to run the main program. Choose a file name from the pull-down box (or type your file name), click “Input File”, then click “Go” to start running.
Generate random job files:

Choose “random job generator” label to generate your own job input file.

2. Assumptions:
a. In any 1 step, the system can only do 1 job. 

b. Scanning 1 memory hole takes 1 step.
c. Scheduling a new job (decision making) happens immediately.

d. Loading a new job (from decision making to starting running) takes 3 steps.

e. Removal of a completed job happens immediately.

f. Memory hole coalescing happens immediately.

3. Observed Results:
a. Results obtained from the professor’s 4 datasets:

	
	First Fit
	Best Fit
	Worst Fit
	Next Fit

	Jobs1.txt
	4597
	4883
	4693
	4641

	Jobs2.txt
	3179
	3380
	3373
	3278

	Jobs3.txt
	3356
	3453
	3595
	3235

	Jobs4.txt
	3935
	3929
	4029
	3812


(Unit: step)
b. Results obtained from my generated datasets:
I prepared following 4 datasets:

	
	# of Jobs
	Size Range
	Step Range

	myjobs1
	100
	50-150k
	1-80

	myjobs2
	100
	100-500k
	1-200

	myjobs3
	100
	100-500k
	1-100

	myjobs4
	100
	1-30k
	1-80


And here is the result:

	
	First Fit
	Best Fit
	Worst Fit
	Next Fit

	myjobs1
	6135
	6567
	6478
	6293

	myjobs2
	15260
	14774
	15449
	15395

	myjobs3
	10031
	10035
	9842
	10010

	myjobs4
	5079
	5220
	5456
	4975


(Unit: step)

4. Discussions

By using above 4 datasets, each strategy shows its advantages in one of the datasets. 
First-fit and next-fit strategies win when job size is small. If job size is small, there are more holes with small size. Since best-fit and worst-fit need to traverse all memory holes to make a decision, they are much slower. In most cases, next-fit is better than first-fit. Because next-fit always searches the most “unsearched” area, which makes it easier to find a hole. On the other hand, first-fit always search the most recently searched area, therefore the density of the upper part of memory is higher than the lower part. Because of this, it’s not so easy for first-fit to find a room immediately. However, when the minimal job size is large enough, first-fit can be better than next-fit. Because there are no tiny jobs which can always fill top holes, the top area becomes less dense, which saves steps for first-fit.
When job size is large enough, the cost of traversing all memory holes is lowered. Best-fit and worst-fit take advantage. In myjobs2, the range of steps is 200 while the range of steps of myjob1 is 100. Because steps are sparsely distributed in myjob2, it is less frequent that 2 jobs finish at same time to make coalescing happen. Since both myjob2 and myjob3 have large jobs (up to 500k), memory coalescing is important in order to make room for them. While memory coalescing is less happening in myjob2, the best-fit strategy can offer large rooms for large jobs. This will explain the difference in performance between myjob2 and myjob3.
Generally, next-fit and first-fit work well with small-sized jobs. Next-fit is usually better than first-fit because it always searches the least frequently searched area. Best-fit and worst-first are more suitable for large jobs. If, for some reason (e.g. sparse distribution of steps), memory coalescing is less possibly taking place, best-fit will be better than worst-fit in making big rooms.
