Relocatable Assembler, Linker, and Loader

With Java

CSE 258 Project 1

[image: image1.png]& C5E258 Project 1 by H:
e Felp

Zhang

=lolx]

st atoss: [1700 Sl =
o tep 2 Rlsted achne Code
Scc e T 17w
it ™ i
e s 3¢ 022 oz soc surez
sk soozt 511 50020 it s sir20
5 so020 s so02t e o s1r21
14 so02t s so020 i soc sures
¢ nonore 11 w002t o o stret
w0 e so0c0 0 30c s1r
bt so022 m e T
bac ss01 s so022 20 o s1722
1h so022 e w01 s s0c 01
c wenin 11 w0022 s o surez
e s0020 e so00s s 30c s1709
b ceein e so020 s e s1r20
cnore STY 80020 e 008 20 e s1700
10 so02t 11 so0z0 50 s sireo
15 smr w02t 3o o suren
s s 105
1o -

o o ot oaded

Haibei Zhang

Feb 6, 2003

1. To Use This Program:

a. Run the executable “proj1Win32.exe” or compile the source code file “main.java”. Make sure “input1.txt”, “input2.txt”, “input3.txt” are in the same folder.

b. Choose a file name and click “load” to load a source 6502 file.

c. Click “step 1” to convert it into relocatable code
d. Input a 4-digit hexadecimal starting address and click “step 2” to convert it into relocated machine code

2. Design Strategy

The purpose of this project is to convert 6502 assembly code into relocatable code (step 1) and relocated machine code (step 2).

In step 1, I first scan the source program, looking for symbols defined in the beginning of each instruction. Meanwhile, I scan each instruction and compute its length in bytes, then from the top to the bottom I assign each instruction a memory address starting from 0000. If an instruction has a symbol defined, an instance of Symbol class will be created (with its name and address) and added into the symbol table (implemented as a vector). For every instruction, an instance of Instruction class will be created and added into an Instruction Vector (each instruction has 2 properties: address and content).
Some instructions may refer to symbols. In the second pass, I scan all the instructions in the vector, and replace these symbol names with their corresponding address (this mapping has been stored in symbol table).

Finally, I print the instruction vector in the TextArea in the middle.

In step 2, I first add the starting address (obtained from an input TextField) to each instruction’s relocatable address. In the body of some instructions, there are also relocatable addresses which need to be updated. I scan every instruction and update all absolute addresses, immediate addresses are remained intact.
3. Results (In step 2, starting address is set 1F00)

a. input1.txt

	Source code
	Relocatable (step 1)
	Relocated (step 2)

	start LDY #$FF

loop1 LDX #$FF

loop2 DEX

BNE loop2

DEY

BNE loop1

RTS
	0000 LDY #$FF

0002 LDX #$FF

0004 DEX

0005 BNE $0004

0007 DEY

0008 BNE $0002

000A RTS
	1F00 LDY #$FF

1F02 LDX #$FF

1F04 DEX

1F05 BNE $1F04

1F07 DEY

1F08 BNE $1F02

1F0A RTS

b. input2.txt

	Source code
	Relocatable (step 1)
	Relocated (step 2)

	mlt16 LDA #$00

STA $0026

STA $0027

LDX #$16

nxtbt LSR $0021

ROR $0020

BCC align

LDA $0026

CLC

ADC $0022

STA $0026

LDA $0027

ADC $0023

align ROR A

STA $0027

ROR $0026

ROR $0025

ROR $0024

DEX

BNE nxtbt

RTS
	0000 LDA #$00

0002 STA $0026

0005 STA $0027

0008 LDX #$16

000A LSR $0021

000D ROR $0020

0010 BCC $0022

0012 LDA $0026

0015 CLC

0016 ADC $0022

0019 STA $0026

001C LDA $0027

001F ADC $0023

0022 ROR A

0023 STA $0027

0026 ROR $0026

0029 ROR $0025

002C ROR $0024

002F DEX

0030 BNE $000A

0032 RTS
	1F00 LDA #$00

1F02 STA $1F26

1F05 STA $1F27

1F08 LDX #$16

1F0A LSR $1F21

1F0D ROR $1F20

1F10 BCC $1F22

1F12 LDA $1F26

1F15 CLC

1F16 ADC $1F22

1F19 STA $1F26

1F1C LDA $1F27

1F1F ADC $1F23

1F22 ROR A

1F23 STA $1F27

1F26 ROR $1F26

1F29 ROR $1F25

1F2C ROR $1F24

1F2F DEX

1F30 BNE $1F0A

1F32 RTS

c. input3.txt

	Source code
	Relocatable (step 1)
	Relocated (step 2)

	sqrt16 LDY #$01

STY $0022

DEY

STY $0023

again SEC

LDA $0020

TAX

SBC $0022

STA $0020

LDA $0021

SBC $0023

STA $0021

BCC nomore

INY

LDA $0022

ADC #$01

STA $0022

BCC again

INC $0023

JMP again

nomore STY $0020

STX $0021

RTS
	0000 LDY #$01

0002 STY $0022

0005 DEY

0006 STY $0023

0009 SEC

000A LDA $0020

000D TAX

000E SBC $0022

0011 STA $0020

0014 LDA $0021

0017 SBC $0023

001A STA $0021

001D BCC $0030

001F INY

0020 LDA $0022

0023 ADC #$01

0025 STA $0022

0028 BCC $0009

002A INC $0023

002D JMP $0009

0030 STY $0020

0033 STX $0021

0036 RTS
	1F00 LDY #$01

1F02 STY $1F22

1F05 DEY

1F06 STY $1F23

1F09 SEC

1F0A LDA $1F20

1F0D TAX

1F0E SBC $1F22

1F11 STA $1F20

1F14 LDA $1F21

1F17 SBC $1F23

1F1A STA $1F21

1F1D BCC $1F30

1F1F INY

1F20 LDA $1F22

1F23 ADC #$01

1F25 STA $1F22

1F28 BCC $1F09

1F2A INC $1F23

1F2D JMP $1F09

1F30 STY $1F20

1F33 STX $1F21

1F36 RTS

Based on observing of the results above, this program has shown its correctness in constructing symbol table, converting symbol name, and converting memory addresses.
4. Discussions
This program currently does not accept zero-page addressing. Zero-page addressing makes address-conversion complex. In step 2, an instruction like LDA $01 may become LDA $1F01, whose length changes from 2 byte to 3 byte. This change in its own length will affect all instruction’s address below. However, this problem can be solved by detecting the instruction’s change in length. If the address is no greater than FF before relocation, and greater than FF after relocation, its length is changed. All instructions after this one will have to increment their address by 1.
