
1

ER Diagram to UML Class Diagram

Motivation: An indirect approach to find classes from a software-engineering problem is
through the construction of ER diagrams. Constructing an ER diagram ensures that the sets of
elements with significant properties are selected. As a next step, we convert each entity type into
a class, where each class represents sets of elements with significant properties. However, a class
is supposed to indicate only those sets of elements (with significant properties) that offer
different services to the whole software. Hence, we first convert the ER diagram to a crude class
diagram. Then, using the information from other sources like use case diagrams and sequence
diagrams, we identify the services offered by each class. In this process if we find that more
classes are needed to offer all essential services, we create new classes. In contrast, if we find
that there are classes that are offering no services or redundant services, we try to merge these
classes with other existing classes. In other words, we eventually remove those classes.

Overview: The class diagrams of UML (Unified Modeling Language) are similar to ER
diagrams in many ways. Unfortunately, the terminology often differs. An entity type in an ER
diagram corresponds to a class in the class diagram. Although an entity in an ER diagram loosely
corresponds to an object in UML, the class diagram never shows any object. In the following
part, we discuss how the symbols/notations of ER diagrams are mapped into the corresponding
items of the class diagrams.

ER to UML class diagram conversion:

1. Enity-type

• Strong entity type: A strong entity type becomes a class, which is displayed as a box. A class
includes three sections: the top section gives the class name; the middle section includes the
attributes for individual objects of the class; and the last section includes "operations" that
can be applied to these objects. We will discuss the "operations" later, and hence for the time
being we keep it blank. The class diagram shows the primary key using a notation <<PK:
…>> . The notation <<..>> , which is also know as a stereotype, is important. Using a
stereotype, we can show many different concepts for which we do not have any proper
notation.
Example: Employee in Fig. 3 and Fig. 4.

• Weak entity type: It also becomes a class. The partial key of the weak entity type is shown in
a projected box. This projected box is not attached to the class obtained from the weak entity
type. Rather the projected box appears in the class that corresponds to the strong entity type
on which the weak entity type depends. In a class diagram, the weak relationship is called
qualified association.
Example: Dependent in Fig. 3 and Fig. 4.

2. Attributes:

2

• Simple: They are shown in the class box.
Example: Attributes of Employee in Fig. 3 and Fig. 4.

• Composite: Show all the components serially, with their combined name at the beginning.
Example: Names of the class Employee in Fig. 3 and Fig. 4.

• Derived: Just use '/' in front of the attribute name.
Example: noOfEmployee of Department in Fig. 3 and Fig. 4.

• Multivalued: Here we use a concept called aggregation. We form a separate class (say class
A) for each multivalued attribute, and connect this class with the original class using
aggregation symbol (a diamond). Note that the aggregation symbol is attached to the class
corresponding to the original entity type, and it is not the other way. However, there are two
variations: the diamond could be either dark or hollow. If we pick one element from the class
A and we find that the element can be related to only one element from the original class, and
the existence of A depends on the original class, then it is called composite aggregation or
composition. It is shown using a dark diamond. One example is our fingers: A given finger is
a part of a particular human body, and without the body there is just no existence of any
finger. Let us see the other case now. If we pick one element from the class A, and we find
that the element can be related to more than one element from the original class, then it is
called shared aggregation. It is shown using a hollow diamond. One example is the
connection between location and department in Fig. 3 and Fig. 4. Each department should have
minimum one location, and it can have more than one location. Each location can be
occupied by minimum one department, and the same location can be shared by more than
one department (Fig. 3 and Fig. 4). Hence, it is a shared aggregation. Note that here even if the
department does not exist, the location exists. In other words, we decide the type of the
aggregation depending on the cardinality and participation constraint (i.e., one-to-one, one-
to-many, many-to-one, many-to-many, total, partial). We also show the cardinality and
participation constraint in the class diagram.

3. Relations:
Binary relations: The relationships in UML terminology are called associations. In the
class diagram, the cardinality is referred to as multiplicity.

� One-to-one, many-to-one, one-to-many relations that are either total or partial: In a class
diagram all relations are denoted by using a straight line. The name of the relation is
written above this line. You may also prefer to write the role names. Each side of the
association contains some interval that shows both the multiplicity and participation
constraint.

3

Fig. 1: A part of an ER diagram.

The cardinality and participation constraint of an association is shown using an interval.
Here, the difference between ER diagram and the class diagram are (a) instead of writing
1..N, we write 1..*, and (b) the positioning of this interval is just opposite to that of in ER
diagram. The class diagram corresponding to Fig. 1 is shown in Fig. 2.

 Fig. 2: Class diagram corresponding to Fig. 1.

Example: Works_for association in Fig. 3 and Fig. 4.
Some books would like to use one symbol() after works_for. It is optional. It is used to
show the meaning that employees work for departments; but departments do not work for
employees.

� Many-to-many relations that are either total or partial: Make a separate class for it, and
show all attached attributes inside the class. Remember that this class contains the
primary key of both the connecting classes. The technique to show multiplicity and
participation coefficient is same as above.
Example: The association Manages in Fig. 3 and Fig. 4.

� Descriptive attribute: If the relationship, which is either one-to-one or many-to-one or
one-to-many, has some descriptive attribute, first make a separate class for it, and show
all attached attributes inside the class. The descriptive attributes (i.e., the attributes
connected to the relations) are later either exported to the entity type at the left-hand side
or exported to the entity type at the right-hand side. Exact entity type depends on the
relationship. We decide it following the techniques that we adopt while converting a
relationship into a table. From those techniques, we know that we do not construct any
table for one-to-one, one-to-many, and many-to-one relationships. We export the
descriptive attributes to the "many" sides of the one-to-many or many-to-one
relationships. If the relationship is one-to-one, and it has total relationship only at one
side, we export the descriptive attributes to the class that is connected through the total
relationship. If both or none of the sides of the one-to-one relationship are total, then all
the descriptive attributes are exported to the entity type either at the left hand side or at
the right hand side.

(1..1)
A

(0..N)

R B

A B
0..*1..1

R

4

If the relationship is many-to-many, then we always create a class. Hence, if the
relationship has some descriptive attribute, we show it in the class box.
Example is Works_for in Fig. 3 and Fig. 4.

• Recursive relation: In the class diagram, the recursive relation is called reflexive association.
Although writing the role name is not that important in case of ordinary associations, it is
very important in case of reflexive associations. Otherwise, we do not understand which part
of the association means what.
Example: The reflexive association supervision in Fig. 3 and Fig. 4 has two roles supervisor
and supervisee.

• N-ary relations (N>2): It is similar to the ER diagram. Only difference is that the multiplicity
constrains are shown using UML notations.

6. Aggregations: There is no direct way to represent the aggregations in UML diagram.
Remember how you convert an aggregation into a table. Do it. Then represent each table using a
class. Note that this aggregation, i.e., the term aggregation defined in the context of an ER
diagram, is different from the aggregation term used in the class diagram.

7. Generalization and specialization: Create a class for each super and sub types. Connect the
subtypes to the supertype using an arrowhead. If the generalization is
total, use {mandatory}
partial, use {optional}
disjoint use {and}
overlapping use {or}

The subclasses inherit all the attributes of the superclass. Moreover, if the generalization is total,
then the superclass is called abstract class. The name of the abstract class is shown using italics.

Example: the entity types research and industrial projects are generalized using the entity type
projects. Hence, we also got two classes research and industrial projects. Since the generalization
is total and disjoint, we attach a comment {mandatory, and}. In addition, project is an abstract
class, and hence it is in Italics.

Note that neither the ER diagram nor the class diagram is unique. The UML class diagram
corresponding to Fig. 3 is shown Fig. 5. This diagram shows how the UML class diagram looks
like just after the conversion; however, it does not show the refined class diagram. We can obtain
the refined class diagram only after consulting use case diagram and sequence diagram.

Can we delete some of the classes that appeared due to the descriptive attributes of the one-to-
one, one-to-many and many-to-many relations? Using the same technique that we follow while
converting an ER-diagram to a set of tables, we get the modified class diagram as shown in Fig. 5.
Note that the class corresponding to Manages has been merged with the class Department.

5

Table 1: The notational differences between ER diagrams and class diagrams are shown.

Item ER Diagram Class Diagram
Strong entity type or class Box Box
Weak entity type or reflexive
class

Two concentric boxes Box.

Simple attribute or variables Bubble attached to the entity
type

Text inside class box

Composite attribute or
variable

Bubbles attached to a main
bubble

Structured text inside class
box

Derived attribute or variable Bubble with dotted line '/' before the attribute name
Multivalued attribute or
variable

Two concentric bubbles Open or filled diamond, i.e.,
aggregation/composition

Primary key Underlined attribute name Use stereotype <<PK>>
Partial key Dotted underline One projected box is attached

with the class on which the
reflexive class depends. This
box contains the partial key.

Recursive relationship or
reflexive association

Self join through a diamond Self join using straight lines

Binary relationship or
association

Diamond Straight line

N-ary (N>2) relationship Diamond Diamond
Relationship with descriptive
attributes or variables

Bubbles coming out from the
relationship

Class attached to association
with a dashed line. This class
contains the variables.

Cardinality or multiplicity Interval. Interval, but the positions of
the intervals are just opposite
to that in ER diagram. Instead
of writing interval (1..N), here
we write 1..* or (1..*).

Generalization/specialization Circle Arrow with hollow head
Disjoint generalization 'D' inside the circle Add comment {And}
Overlapping generalization 'O' inside the circle Add comment {Or}
Total generalization Two parallel lines Add comment {Mandatory}
Partial generalization One line Add comment {Optional}

6

Fig. 3: An ER diagram for which we want the corresponding class diagram.

CONTROLS

WORKS_FOR

WORKS_ON

Startdate

Hours
Project

PName

PNo

PLocation

No_of_Employees

Department

DNam

DNo

Location

DEPENDS

MANAGE

(1..N)

(0..1)
(1..1)

(1..M)
(1..N)

(0..N)

(1..1)

(1..1)

(1..1)

(0..N)

Fname

Mname Lname

Name

Sex

Address

Salary
Ssn

Bdate

Employee

SUPERVISION

(1..1) (0..N)

Sex

BirthDate

Dependent

DepName
---------------- Relationship

Supervisee Supervisor

Project

Name

Number

Location

Research
project

D

Industrial
project

GrantTitle Time

D

Fig. 4: A possible class diagram for Fig. 3. Note that neither the ER diagram nor the class diagram
is unique. The corresponding UML class diagram is shown below. This diagram shows how the
UML class diagram looks like just after the conversion; however, it does not show the refined
class diagram. We can obtain the refined class diagram only after consulting use case diagram
and sequence diagram.

0..*

1..1

0..*

S

0..1

1..* 1..1

Works_on

DEPENDENT

Sex
BirthDate
Relationship

DepName

Supervisee

1..1
supervisor

EMPLOYEE

Name
 Fname
 Mname
 Lname
<<PK>>SSN
Bdate
Sex
Address
Salary

1..1
Depends

DEPARTMENT
--
<<PK>>Name
Number
/noOfEmployee

--
0..*

Locate

1..*
Manages
7

Hours

Controls

PROJECT

Name
<<PK>>Number
Location

RESEARCH PROJECT

Title
Time

INDUSTRIAL PROJECT

Grant

upervision

StartDate
------------------- LOCATION

Name

1..1 1..*

{mandatory, and}

Works_for 0..*1..*

Fig. 5: A modified class diagram for Fig. 4:, where the classes corresponding to one-to-one-one to-
many, and many-to-many relationships have been merged with other classes. In this figure, the
class corresponding to Manages has been merged with the class Department.

0..*

1..1

0..*

S

0..1

1..* 1..1Works_on

DEPENDENT

Sex
BirthDate
Relationship

DepName

Supervisee

1..1
supervisor

EMPLOYEE

Name
 Fname
 Mname
 Lname
<<PK>>SSN
Bdate
Sex
Address
Salary

1..1
Depends

DEPARTMENT
--
<<PK>>Name
Number
/noOfEmployee
StartDate
--

0..*

Locate

1..*
Manages
8

Hours

Controls

PROJECT

Name
<<PK>>Number
Location

RESEARCH PROJECT

Title
Time

INDUSTRIAL PROJECT

Grant

upervision

LOCATION

Name

1..1 1..*

{mandatory, and}

Works_for 1..*

